2,909 research outputs found

    Point-wise mutual information-based video segmentation with high temporal consistency

    Full text link
    In this paper, we tackle the problem of temporally consistent boundary detection and hierarchical segmentation in videos. While finding the best high-level reasoning of region assignments in videos is the focus of much recent research, temporal consistency in boundary detection has so far only rarely been tackled. We argue that temporally consistent boundaries are a key component to temporally consistent region assignment. The proposed method is based on the point-wise mutual information (PMI) of spatio-temporal voxels. Temporal consistency is established by an evaluation of PMI-based point affinities in the spectral domain over space and time. Thus, the proposed method is independent of any optical flow computation or previously learned motion models. The proposed low-level video segmentation method outperforms the learning-based state of the art in terms of standard region metrics

    Energy Conservation Constraints on Multiplicity Correlations in QCD Jets

    Get PDF
    We compute analytically the effects of energy conservation on the self-similar structure of parton correlations in QCD jets. The calculations are performed both in the constant and running coupling cases. It is shown that the corrections are phenomenologically sizeable. On a theoretical ground, energy conservation constraints preserve the scaling properties of correlations in QCD jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on ftp://www.inln.unice.fr

    Deep Bilevel Learning

    Full text link
    We present a novel regularization approach to train neural networks that enjoys better generalization and test error than standard stochastic gradient descent. Our approach is based on the principles of cross-validation, where a validation set is used to limit the model overfitting. We formulate such principles as a bilevel optimization problem. This formulation allows us to define the optimization of a cost on the validation set subject to another optimization on the training set. The overfitting is controlled by introducing weights on each mini-batch in the training set and by choosing their values so that they minimize the error on the validation set. In practice, these weights define mini-batch learning rates in a gradient descent update equation that favor gradients with better generalization capabilities. Because of its simplicity, this approach can be integrated with other regularization methods and training schemes. We evaluate extensively our proposed algorithm on several neural network architectures and datasets, and find that it consistently improves the generalization of the model, especially when labels are noisy.Comment: ECCV 201

    High-Risk Wildlife Strike Regions: An In-depth Visual Representation of Wildlife Strikes at and Around Part 139 Airports in Florida.

    Get PDF
    Wildlife strikes with aircraft have been and continue to be a problem in the aviation industry costing millions of dollars in both damage and delays. This study used the geoprocessing information system ArcGIS to depict wildlife strikes at Florida’s 26 Part 139 Airports from 2012 to 2021. Importing reports from the National Wildlife Strike Database into ArcGIS, this study used symbology and geoprocessing tools to create a color/ size gradient that depicts the risk (number of damaging strikes out of known strikes) at each airport. Using an interactive map with ArcGIS Online viewers can observe then select each airports vector point and view a table containing the important information on that airports strike data. Data like number of strikes during time of the day, strikes per weather conditions, and whether the strikes were damaging or not, are contained in the online resource. Attempts to study and depict wildlife strikes are limited, the industry and researchers need to continue research on a localized scale to help mitigate wildlife strikes

    Can the gamma-gamma processes reveal the nature of the sigma ?

    Full text link
    We reanalyse the gamma-gamma scattering data and conclude that in the mass region below 1 GeV the cross section for gamma-gamma to pi^0-pi^0 can be largely explained by the one pion exchange process with pi-pi rescattering. The radiative width of the sigma is estimated and a model dependent separation into contributions from direct gamma-gamma decay and decay through rescattering is obtained. We confront these findings with QCD spectral sum rule (QSSR) predictions and conclude that the sigma can have a large gluonium component in its wave function

    The Predicted RNA-Binding Protein ETR-1/CELF1 Acts in Muscles To Regulate Neuroblast Migration in Caenorhabditis elegans

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Neuroblast migration is a critical aspect of nervous system development (e.g., neural crest migration). In an unbiased forward genetic screen, we identified a novel player in neuroblast migration, the ETR-1/CELF1 RNA binding protein. CELF1 RNA binding proteins are involved in multiple aspects of RNA processing including alternative splicing, stability, and translation. We find that a specific mutation in alternatively-spliced exon 8 results in migration defects of the AQR and PQR neurons, and not the embryonic lethality and body wall muscle defects of complete knockdown of the locus. Surprisingly, ETR-1 was required in body wall muscle cells for AQR/PQR migration (i.e., it acts cell non-autonomously). Genetic interactions indicate that ETR-1 acts with Wnt signaling, either in the Wnt pathway or in a parallel pathway. Possibly, ETR-1 is involved in the production of a Wnt signal or a parallel signal by the body wall muscles that controls AQR and PQR neuronal migration. In humans, CELF1 is involved in a number of neuromuscular disorders. If the role of ETR-1/CELF1 is conserved, these disorders might also involve cell or neuronal migration. Finally, we describe a technique of amplicon sequencing to detect rare, cell-specific genome edits by CRISPR/Cas9 in vivo (CRISPR-seq) as an alternative to the T7E1 assay.NIH P40 OD010440National Institute of General Medical Sciences (P20GM103638)Madison and Lila Self Graduate Fellowship progra

    Automation in cell and gene therapy manufacturing:from past to future

    Get PDF
    As more and more cell and gene therapies are being developed and with the increasing number of regulatory approvals being obtained, there is an emerging and pressing need for industrial translation. Process efficiency, associated cost drivers and regulatory requirements are issues that need to be addressed before industrialisation of cell and gene therapies can be established. Automation has the potential to address these issues and pave the way towards commercialisation and mass production as it has been the case for ‘classical’ production industries. This review provides an insight into how automation can help address the manufacturing issues arising from the development of large-scale manufacturing processes for modern cell and gene therapy. The existing automated technologies with applicability in cell and gene therapy manufacturing are summarized and evaluated here
    • …
    corecore